Computers and Electronics in Agriculture 172 (2020) 105325

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

A comprehensive R interface for the DSSAT Cropping Systems Model R

Check for
updates

Phillip D. Alderman

Department of Plant and Soil Sciences, Oklahoma State University, 371 Agricultural Hall, Stillwater, OK 74078, USA

ABSTRACT

The Decision Support System for Agrotechnology Transfer Cropping Systems Model (DSSAT-CSM) is a widely used modeling system. The DSSAT R package was
developed to provide tools that would facilitate preparing required model inputs, executing simulations, and processing and analyzing outputs for DSSAT-CSM. This
application note demonstrates the use of this new package for building reproducible crop modeling workflows using the DSSAT-CSM system. Example workflows are
provided for modifying values in input data files (soil, weather, and experimental details), running simulations, reading simulated output, and creating publication-
quality visualizations of observed and simulated data. The DSSAT R package provides basic tools that when combined with other R packages will facilitate developing

robust, reproducible, scientific modeling workflows.

1. Introduction

The Decision Support System for Agrotechnology Transfer Cropping
Systems Model (DSSAT-CSM; Jones et al.,, 2003) is a widely used crop
modeling system with an estimated 2,500 users across 100 countries
worldwide (Koo, 2016). The standard user training demonstrates the use of
the DSSAT Shell, a Windows-based graphical user interface (GUI) with
various utilities for preparing input files, running simulations, and sum-
marizing output. This interface greatly improves the accessibility of the
DSSAT-CSM for beginning users. However, most advanced users of DSSAT-
CSM have developed ad hoc scripts in various languages/software en-
vironments (e.g. R, Python, SAS) to automate various stages in their analysis
(J.W. White, personal communication, October 17, 2019). While an ad hoc
approach may be sufficient for many applications, a coherent framework
for developing modeling workflows would improve the transparency, re-
producibility, and productivity of crop modeling research. With such a
framework, researchers would save time in the immediate term in the
generation and processing of files and in the long term by making their
scripts easier to understand by others and themselves retrospectively.

There have been several attempts to provide frameworks for
building crop modeling workflows. For example, the apsimr package
(Stanfill, 2015) was developed as an interface to the Agricultural Pro-
duction Systems sIMulator (APSIM; Holzworth et al., 2014), a crop
modeling system similar to DSSAT-CSM. The package includes func-
tions to create, edit, and run APSIM simulations and analyze outputs
from R. Similarly, pyDSSAT is a package that was developed to facil-
itate the use of DSSAT-CSM within a Python workflow (He et al., 2015).
The package provides command line interface and GUI tools for ma-
nipulating simulation batch files and crop management input files,
running DSSAT-CSM simulations and analyzing model outputs. Like-
wise, $DSSAT (Abreu Resenes et al., 2019) is a JavaScript Module that

E-mail address: phillip.alderman@okstate.edu.

https://doi.org/10.1016/j.compag.2020.105325

was developed to eventually replace the existing DSSAT Shell. The long-
term goal of the effort is to provide support for all input and output
types for DSSAT-CSM, but its current implementation has capabilities
similar to those of pyDSSAT. Within the R ecosystem, the Dasst
package (Lozza, 2017) provides tools to simplify the post-processing of
output files for DSSAT-CSM, although no tools are provided for ma-
nipulating input files or running the model. While each of the above
examples are valuable contributions, all are limited in scope and none
constitute a generic framework for developing full crop modeling
workflows with DSSAT-CSM. A generic framework would need to
provide capabilities for manipulating the full range of required model
inputs (e.g. crop management, soil properties, weather data, and gen-
otype-specific parameters), running simulations and post-processing
model outputs. Furthermore, none of these frameworks leverage the
tidyverse, a set of R packages developed to enhance transparency
and reproducibility of analysis based on a common design philosophy,
grammar, and set of data structures (Wickham, 2019). The DSSAT R
package was developed to provide tools consistent with tidyverse
principles that would facilitate preparing required model inputs, ex-
ecuting simulations, and processing and analyzing outputs for DSSAT-
CSM. This application note demonstrates the use of the new DSSAT R
package for building reproducible crop modeling workflows with
DSSAT-CSM.

2. Installing and loading the DSSAT package

The DSSAT package source code is hosted in an open-source project on
Github (https://github.com/palderman/DSSAT). Source Code 1 provides
example R code for installing the DSSAT package from either the Github
source code repository using the install_github () function or from the
Comprehensive R Archive Network (CRAN; https://cran.r-project.org) using

Received 15 November 2019; Received in revised form 24 February 2020; Accepted 27 February 2020

Available online 20 March 2020

0168-1699/ © 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

http://www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2020.105325
https://github.com/palderman/DSSAT
https://cran.r-project.org
https://doi.org/10.1016/j.compag.2020.105325
mailto:phillip.alderman@okstate.edu
https://doi.org/10.1016/j.compag.2020.105325
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2020.105325&domain=pdf

P.D. Alderman

the install.packages () function. Installing from the Github source
code repository requires installation of the devtools R package (Wickham
et al,, 2019). Either option should install DSSAT and any required de-
pendencies not already installed on the system. Once package installation is
complete, the package can be loaded using the library() function
(Source Code 1). Full use of the DSSAT package requires an installation of
DSSAT-CSM, which can be obtained from the DSSAT Foundation (https://
dssat.net/) or by compiling it from source code (https://github.com/
DSSAT/dssat-csm-0s). When the DSSAT package is loaded, it attempts to
locate the local DSSAT-CSM installation and identify the proper executable
name. It then prints a start up message indicating what file path was found
(if any) and prompting the user to reset the path (by setting the value of the
DSSAT.CSM option variable) if the located file path is incorrect. Source
Code 1 shows two examples for setting the file path to the DSSAT-CSM
executable. The first is an example path for a Windows installation. The
second example is compatible with a Unix-style operating system (e.g.
macOS, Linux, etc). The following sections illustrate use of the most im-
portant functions available in the package. However, a complete list of
functions can be found in the reference manual on CRAN (https://cran.r-
project.org/package =DSSAT).

Source Code 1. Example code for installing and loading the DSSAT R
package.

Computers and Electronics in Agriculture 172 (2020) 105325

function is an object of class DSSAT_tbl, which is an extension of the
tibble (itself an extended version of the basic data frame with enhanced
functionality defined in the tibble package; Wickham and Grolemund,
2017; Miiller and Wickham, 2019), with additional attributes used intern-
ally to store information about the original format of the file from which the
data came. Some of the original data are converted into list-columns due to
the one-to-many relationship between whole-profile and layer-specific data.
For example, properties such as albedo (SALB) or runoff curve number
(SLRO) have a single value for each profile, but other properties, such as
saturation volumetric soil water (SSAT) or bulk density (SBDM), have va-
lues for each individual layer within the profile. Storing the layer-specific
data as list-columns in the output from read_sol () facilitates reading and
combining multiple soil profiles into a single combined tibble.

As an example, suppose one wanted to calculate a new value for SSAT
as 95% of pore space estimated from SBDM. One could perform this cal-
culation and replace the former values using the third statement in Source
Code 2. For readers unfamiliar with the tidyverse-style of R program-
ming (http://tidyverse.org; Wickham, 2017), this example uses the & > %
pipe operator to pass the output from one line to the first argument of the
function on the following line. Thus, the single_profile tibble is passed to
mutate (), in which the PEDON column is assigned the code IBNEW00001
and SSAT column is assigned the new values calculated from SBDM. This

Install DSSAT package from Github source using devtools package
devtools: :install_github('https://github.com/palderman/DSSAT')

Install DSSAT package from CRAN
install.packages('DSSAT')

Load the DSSAT package

library (DSSAT)

Example setting DSSAT-CSM path for Windows operating system

options(DSSAT.CSM = 'C:\\DSSAT47\\DSCSM047.EXE')

Example setting DSSAT-CSM path for Uniz-style operating system

options(DSSAT.CSM = '/DSSAT47/dscsm047')

3. Modifying DSSAT files

The DSSAT package implements a set of functions for reading and
writing standard DSSAT file formats including files for cultivar (*.CUL),
ecotype (*.ECO), soil (*.SOL), weather (*.WTH), experiment details (FileX),
seasonal observed data (FileA), and time-series observed data (FileT). As an
example, the function read_sol () reads soil profiles from the standard
DSSAT soil file (*.SOL) format. Source Code 2 shows the use of this function
within an example workflow that creates a new soil profile from an existing
one and appends it to an existing soil file. The first statement reads the
entire contents of the soil file SOIL. SOL, while the second statement reads
only the profile identified by the code I800000001. The output of this

Reading all profiles in a file
all_profiles <- read_sol('SOIL.SOL')
Reading a single profile
single_profile <- read_sol('SOIL.SOL',id_soil =
Renaming the profile and replacing SSAT with new values
calculated from SBDM using tidyverse-style coding
new_profile <- single_profile 7>
mutate (PEDON="'IBNEWO0O0O01",
SSAT=0.95%(2.65-SBDM) /2.65)
Renaming the profile and replacing SSAT with new values

example and all following examples presuppose that the tidyverse
package has been loaded using the library () function. An alternative
formulation that does not use tidyverse-style coding is provided just
below (Source Code 2). Once these changes have been made, the new
profile can be appended to the existing SOIL.SOL by calling the function
write_sol () with the append argument set to TRUE (the default value),
as shown in the fifth statement in Source Code 2. The write_sol () can
also be used to write a new soil file or overwrite an existing soil file by
setting append to FALSE. Thus, care should be taken to avoid unintentional
loss of data.

Source Code 2. Example code for reading, modifying and writing out
DSSAT soil data.

"IB0O0000001")

calculated from SBDM without using tidyverse-style coding

new_profile <- single_profile
new_profile$PEDON[1] <- 'IBNEWOOOO1'

new_profile$SSAT[[1]] <- 0.95%(2.65-single_profile$SBDM[[111)/2.65

Appending new profile to SOIL.SOL
write_sol(new_profile, 'SOIL.SOL',append=TRUE)

https://dssat.net/
https://dssat.net/
https://github.com/DSSAT/dssat-csm-os
https://github.com/DSSAT/dssat-csm-os
https://cran.r-project.org/package=DSSAT
https://cran.r-project.org/package=DSSAT
http://tidyverse.org

P.D. Alderman

Weather data can also be imported into R in a similar way using the
read_wth () function. The output of this function is a tibble containing
the daily weather data from the DSSAT format weather file (*.WTH).
The tibble also contains an attribute called GENERAL in which the
general information about the site is stored including, among other
details, the long-term average temperature (TAV) and monthly tem-
perature amplitude (AMP). Supposing one had a directory of weather
files from multiple years at the same location that were missing the TAV
and AMP values, one could calculate these values from the daily data,
assign them to the GENERAL attribute for each year, and then re-write
the weather data with the new TAV and AMP values. An example
workflow for this process is provided in Source Code 3. Variations of
this workflow could be used to modify values within daily weather data
as well as to fill missing-data gaps or combine variables from different
data sources.

Source Code 3. Example workflow for modifying the values for long-
term average temperature (TAV) and monthly temperature amplitude
(AMP) within a set of DSSAT weather files (*.WTH).

Generate a list of the weather files
wth_file_list <- list.files(pattern='.WTH')
Read all weather files into a list of tibbles
all_wth <- wth_file_list 7>

map (read_wth)

Computers and Electronics in Agriculture 172 (2020) 105325

The experiment details file format (FileX) is one of the most com-
plex of the DSSAT file formats because it contains a tree-like structure
with multiple tables of data that are connected by a combination of one-
to-one and one-to-many relationships. At present, no attempt has been
made within the DSSAT package to construct a unified relational data
structure. Thus, the output of the read _filex () function is a named list
of tibbles each element of which corresponds to a section of the FileX.
The names of the list correspond to the section names of the FileX. An
example workflow for adding an additional irrigation event to the
IRRIGATION AND WATER MANAGEMENT section of a FileX is given in
Source Code 4. The function read_filex () works similarly to the other
read_* () functions already discussed. In the second statement, a
conditional mutate function mutate_cond () (provided by the DSSAT
package) is used to modify only rows that meet the conditions provided
in the second argument. In this case, only rows where I equals 1 will be
modified. Due to the one-to-many relationship between irrigation level
(1) and the application details (IDATE, IROP, and IRVAL), these details
are stored as list-columns, hence the data for the new event must be
appended using the concatenate function c (). The final statement in

Combine all years into a single tibble for summary calculations

combined_wth <- all_wth %>%
bind_rows ()
Calculate long-term average temperature (TAV)
tav <- combined_wth %>7
summarize (TAV=mean ((TMAX+TMIN)/2))
Calculate monthly temperature amplitude (AMP)
amp <- combined_wth %>7
Extract month from DATE column
mutate (month = month(DATE)) %>/
Group data by month
group_by (month) %>%
Calculate monthly means
summarize (monthly_avg = mean((TMAX+TMIN)/2)) %>%

Calculate AMP as half the difference between minimum and

mazimum monthly temperature

summarize (AMP = (max(monthly_avg)-min(monthly_avg))/2)

Generate new general information table

general_new <- all_wth[[1]] %>} # use first year as template

Extract GENERAL table

attr ('GENERAL') %>%

Replace TAV and AMP with new values

mutate (TAV=tav$TAV,

AMP=amp$AMP)

Store new general information table within each year
for(i in 1:length(all_wth)){

Replace general information table

attr(all_wth[[i]],'GENERAL') <- general_new
}

Overwrite previous weather files with modified weather data

for(i in 1:length(all_wth)){
Write weather file %
write_wth(all_wth[[i]],wth_file_list[i])
}

P.D. Alderman

Source Code 4 uses write filex () to write out the modified experi-
ment details using the same file name as the original file. By using the
same name the original file will be replaced by the new file. If this
behavior is not desired, a different file name for the FileX may be
provided.

Source Code 4. Example workflow for adding another irrigation event
to an existing DSSAT experiment details file (FileX).

Read in original FileX
file_x <- read_filex('KSAS8101.WHX')
Add an additional 60 mm irrigation event on 4 May 1982
file_x$ IRRIGATION AND WATER MANAGEMENT™ <-
Extract the original IRRIGATION AND WATER MANAGEMENT
file_x$ IRRIGATION AND WATER MANAGEMENT™ %>%
Modify the IDATE, IROP, and IRVAL columns only where
mutate_cond(I==1,
IDATE = c(IDATE,as.POSIXct('1982-05-04')),
IROP c(IROP,"IR0O0O1"),
IRVAL = c(IRVAL,60))
Overwrite original FileX with new values
write_filex(file_x, 'KSAS8101.WHX')

Although space considerations preclude providing examples for all
file types, similar workflows could be constructed for other file types
using the corresponding functions for reading/writing files for cultivar
(read_cul () and write_cul()), ecotype (read_eco() and wri-
te_eco()), FileA (read_filea() and write_filea()), and FileT
(read_filet () and write_filet ()).

4. Running simulations and summarizing output

In addition to modifying input files, the DSSAT package also

Computers and Electronics in Agriculture 172 (2020) 105325

contains functions for generating simulation batch files, running the
model, and reading simulated output. Once the option variable
DSSAT.CSM has been set (see Section 2), the user can generate a si-
mulation batch file as illustrated in the third and fourth statements in
Source Code 5. In the third statement, the user constructs a data frame
or tibble with all the necessary columns specified including, among
other details, the FileX name and treatment levels to be run. In the

section

I equals 1

fourth statement, the user specifies as many of the columns as are
needed to uniquely specify the set of simulations and the remaining
columns will be filled with default values. If the file_name argument is
not specified, the function will attempt to construct a file name based
on the current value of DSSAT.CSM. Once the batch file has been
generated, the model can be run using the run_dssat () function.
Once simulations have completed, the simulated output can be read
using the read_output () function as is demonstrated in Source Code
5.

Fertilization Rate

3. —— 0

-4&- 60

—~ -=- 180

9

IS

N

E

x 27

()

T

£

(0]

Q

<

Y—

[4v]

(0]

- 14

0- —/’/__'-_\

0 50 100

150 200 250

Days After Planting

Fig. 1. Output of code shown in Source Code 6 showing observed (points) and simulated (lines) leaf area index over time for 0, 60, and 180 kg N ha~? fertilization

rates.

P.D. Alderman Computers and Electronics in Agriculture 172 (2020) 105325

Source Code 5. Example workflow for generating a batch file, running
the DSSAT-CSM model, and reading seasonal summary output.

filters the output to include only treatments 4 to 6. The second state-
ment reads in observed data from FileT format and subsets to the cor-
responding treatments. The final statement builds a publication-quality

Generate a DSSAT batch file using a tibble

tibble (FILEX='KSAS8101.WHX', TRINO=1:6, RP=1, SQ=0, 0P=0, C0=0) %>%
write_dssbatch()

Generate a DSSAT batch file with function arguments

write_dssbatch(filex='KSAS8101.WHX',trtno=1:6)

Run DSSAT-CSM

run_dssat ()

Read seasonal output file

smry <- read_output ('Summary.0UT')

The read_output () function can also be used to read daily si-
mulated output and generate publication-quality graphics when com-
bined with functions from the ggplot2 package (Wickham, 2016) as

plot using the simulated and observed datasets, the output of which is
shown in Fig. 1. Further explanation of the functions used to construct
the plot can be found in the ggplot2 documentation (Wickham, 2016).

shown in Source Code 6. The first statement reads in the simulated

. S Code 6. E 1 kflow fi ding daily simulated t
output, converts treatment number (TRNO) to a discrete factor, and ource Lode xample workflow for reading daily simulated outpu

and generating graphics using ggplot2.

Read datly simulated plant growth output
pgro <- read_output('PlantGro.0UT') %>%
Filter to treatments 4 to 6
filter (TRNO %in% 4:6) %>%
Convert TRNO to a factor and rename to Fertilization Rate
mutate ("Fertilization Rate =factor (TRNO,labels=c(0,60,180)))
Read time-series observed plant growth data from FileT
filet <- read_filet('KSAS8101.WHT') %>
Filter to treatments 4 to 6
filter (TRNO %in% 4:6) %>%
Convert TRNO to a factor and rename to Fertilization Rate
mutate("Fertilization Rate =factor (TRNO,labels=c(0,60,180))) %>%
Add days after planting (DAP) to observed data
left_join(select(pgro,DATE,DAP))
Construct a combined plot with simulated and observed data
ggplot (data=pgro,aes(x=DAP,y=LAID,linetype="Fertilization Rate))+
Add a line plot for simulated data
geom_line()+
Add observed data as points
geom_point(data=filet,aes(shape="Fertilization Rate™))+
Add a custom y-axis label with units
ylab(expression(Leaf~Area~Index~" ("*m~2~m~{-2}*") "))+
Add a custom z-azis label
xlab("Days After Planting")+
Set color theme to black and white
theme_bw()+
Reposition legend
theme (legend.position=c(0.15,0.8))

P.D. Alderman

5. Summary and future directions

In summary, the DSSAT R package provides basic functions for
reading and writing input files, executing simulations, and reading si-
mulated output files for DSSAT-CSM. These functions can be combined
with other R packages to develop robust, reproducible, scientific
modeling workflows. The current version of the package provides a
foundation for further development of higher-level functionality such as
conducting automated sensitivity analysis and parameter estimation,
filling gaps in weather data, and estimating soil parameters from ped-
otransfer functions. Future developments for the package might also
include improving the interface for manipulating FileXs, speeding up
read and write operations and extending capabilities to include reading
and writing species parameter files.

CRediT authorship contribution statement

Phillip D. Alderman: Conceptualization, Methodology, Software,
Writing - original draft, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This work was supported by the USDA National Institute of Food
and Agriculture, Hatch project OKL03023.

Computers and Electronics in Agriculture 172 (2020) 105325

References

de Abreu Resenes, J., Pavan, W., Holbig, C.A., Fernandes, J.M.C., Shelia, V., Porter, C.,
Hoogenboom, G., 2019. jDSSAT: A JavaScript module for DSSAT-CSM integration.
SoftwareX 10, 100271. https://doi.org/10.1016/j.s0ftx.2019.100271.

He, X., Peng, L., Sun, H., 2015. pyDSSAT documentation release 1.0. http://xiaoganghe.
github.io/pyDSSAT/doc/_downloads/pyDSSATdoc.pdf (accessed February 12,
2020).

Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N.I., McLean, G.,
Chenu, K., van Oosterom, E.J., Snow, V., Murphy, C., Moore, A.D., Brown, H., Whish,
J.P., Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., Hochman, Z.,
Thorburn, P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., Chapman, S.,
Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I, Li, F.Y., Wang, E.,
Hammer, G.L., Robertson, M.J., Dimes, J.P., Whitbread, A.M., Hunt, J., van Rees, H.,
McClelland, T., Carberry, P.S., Hargreaves, J.N., MacLeod, N., McDonald, C.,
Harsdorf, J., Wedgwood, S., Keating, B.A., 2014. APSIM - evolution towards a new
generation of agricultural systems simulation. Environ. Modell. Softw. 62, 327-350.
https://doi.org/10.1016/j.envsoft.2014.07.009.

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.,
Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping
system model. Eur. J. Agron. 18, 235-265.

Koo, J., 2016. DSSAT listed as one of the greatest accomplishments of the UF-IFAS.
https://dssat.net/2164 (accessed November 6, 2019).

Lozza, H., 2017. Dasst: Tools for Reading, Processing and Writing dssat Files. R package
version 0.3.3. Buenos Aires, Argentina. https://github.com/hlozza/Dasst.

Stanfill, B., 2015. apsimr: Edit, run and evaluate APSIM simulations easily using R. R
package version 1.2. https://CRAN.R-project.org/package = apsimr.

Wickham, H., 2019. The tidy tools manifesto. https://tidyverse.tidyverse.org/articles/
manifesto.html (accessed February 12, 2020).

Wickham, H., 2017. Tidyverse: Easily install and load the ‘tidyverse’. R package version 1.
2.1. https://CRAN.R-project.org/package = tidyverse.

Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New
York.

Wickham, H., Grolemund, G., 2017. R for Data Science: Import, Tidy, Transform,
Visualize, and Model Data. O’Reilly Media, Inc.

Miiller, K., Wickham, H., 2019. Tibble: Simple data frames. R package version 2.1.3.
https://CRAN.R-project.org/package =tibble.

Wickham, H., Hester, J., Chang, W., 2019. devtools: Tools to make developing R packages
easier. R package version 2.2.1. https://CRAN.R-project.org/package = devtools.

https://doi.org/10.1016/j.softx.2019.100271
http://xiaoganghe.github.io/pyDSSAT/doc/_downloads/pyDSSATdoc.pdf
http://xiaoganghe.github.io/pyDSSAT/doc/_downloads/pyDSSATdoc.pdf
https://doi.org/10.1016/j.envsoft.2014.07.009
http://refhub.elsevier.com/S0168-1699(19)32307-5/h0020
http://refhub.elsevier.com/S0168-1699(19)32307-5/h0020
http://refhub.elsevier.com/S0168-1699(19)32307-5/h0020
https://dssat.net/2164
https://github.com/hlozza/Dasst
https://CRAN.R-project.org/package=apsimr
https://tidyverse.tidyverse.org/articles/manifesto.html
https://tidyverse.tidyverse.org/articles/manifesto.html
https://CRAN.R-project.org/package=tidyverse
http://refhub.elsevier.com/S0168-1699(19)32307-5/h0055
http://refhub.elsevier.com/S0168-1699(19)32307-5/h0055
http://refhub.elsevier.com/S0168-1699(19)32307-5/h0060
http://refhub.elsevier.com/S0168-1699(19)32307-5/h0060
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=devtools

	A comprehensive R interface for the DSSAT Cropping Systems Model
	Introduction
	Installing and loading the DSSAT package
	Modifying DSSAT files
	Running simulations and summarizing output
	Summary and future directions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

